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Abstract

With a growing interest in non-GPS positioning, navigation, and timing (PNT), sound

based positioning provides a precise way to locate both sound sources and micro-

phones through audible signals of opportunity (SoOPs). Exploiting SoOPs allows for

passive location estimation. But, attributing each signal to a specific source loca-

tion when signals are simultaneously emitting proves problematic. Using an array

of microphones, unique SoOPs are identified and located through steered response

beamforming. Sound source signals are then isolated through time-frequency mask-

ing to provide clear reference stations by which to estimate the location of a separate

microphone through time difference of arrival measurements. Results are shown for

real data.
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SOUND BASED POSITIONING

I. Introduction

1.1 Alternative Positioning, Navigation, and Timing

In modern operations, the ability to perform precise Positioning, Navigation, and

Timing (PNT) has become an indispensable asset. While the reliance on the Global

Positioning System (GPS) continually increases in order to meet the demands of PNT-

critical operations, so does interest in alternative PNT methods. In circumstances

where GPS capabilities are unavailable or degraded beyond operation requirements,

alternative PNT may provide the necessary capabilities. Examples of alternative

PNT include vision [24], magnetic field anomalies [10], received signal strength from

cell towers [15], and sound [22]. A benefit of many of these methods is the ability

to perform passive navigation. While GPS requires signal transmission from satel-

lites, many alternative PNT methods avoid broadcasting signals by exploiting existing

signals or features readily available in their respective environments. While Signals

of Opportunity (SoOPs) are typically understood as radio frequency signals already

available in the environment that can be used for navigation, SoOPs are not limited

to radio frequencies.

1.2 Sound Based Positioning

With the growing interest in alternative PNT, sound based positioning provides

a precise way to locate both sound sources and sensors through audible SoOPs. The

1



abundance of SoOPs in the audible frequency range provides ample information about

the environment. The unconscious familiarity of sound based positioning to everyday

life allows most people to seamlessly glean understanding about their environment

through stereophonic hearing. Even with closed eyes, one can listen to determine

the general origin of a sound source. The brain determines the location of the sound

source based on the minute difference in time taken for the sound to propagate to

each ear [6]. In fact, in most modern musical recordings, the stereo tracks of each

instrument are slightly offset in order to replicate to the listener how the music would

sound if heard live. Just as human hearing allows sound source location detection,

many computer systems perform the same task through arrays of microphones, but

with much greater accuracy and precision. Solutions using microphone arrays are

not limited to two sensors the way humans are with two ears; computers can utilize

hundreds of microphones over a given field and calculate the time delays of every

microphone [23]. Also, microphones can be spaced much further apart than the

width of the head, which humans are limited to with the spacing of ears. This allows

for larger areas of observation. Computer-based systems have proven beneficial in

sound-based positioning applications such as locating sound sources over a large area

[2], simultaneous localization of several sound sources [4], increasing the intelligibility

of sound sources [30], and determining the location of enemy fire in combat [9]. While

the possibility of sound based navigation replacing the capabilities of GPS is not a

thought on the horizon, there are several circumstances where it may perform more

accurately, or produce residual effects, such as audio surveillance, that GPS cannot

match.
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1.3 Problem Statement

The goal of this research was to explore the capabilities of sound based positioning

as an alternative form of PNT. As a means to exploring location estimation via sound,

a system was developed capable of locating a mobile microphone by using an array of

reference microphones to capture audio from sources of unknown location. Because

passive location is one of the main advantages of GPS-alternative PNT, the sys-

tem was designed to perform without generating its own sound by exploiting SoOPs

common to the audible range. Because of the multiple complexities involved in com-

pleting the task, the design process was broken into five tiers. Each tier progression

holds fewer assumptions and thus becomes more applicable to real-world scenarios,

with Tier 5 meeting the original design requirements. The conditions of testing are

described in Table 1. Sound source type indicates the waveform that each of the

sound sources generates. Sound source timing indicates whether or not the solution

assumes the sound sources are transmitted at exactly known intervals. Sound source

location indicates if a priori knowledge of the source locations are available for use in

estimating the location of the mobile microphone. Successive playback assumes each

sound source completes its transmission before another sound source begins playing,

whereas simultaneous playback assumes multiple sound sources may be overlapping

in their transmission.
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Table 1. Progression of tiers towards more realistic scenarios.

Tier
Sound Source

Type

Sound Source

Timing

Sound Source

Location
Playback

1 Impulse Known Known Successive

2 Impulse Unknown Known Successive

3 Impulse Unknown Unknown Successive

4 Recorded Speech Unknown Unknown Successive

5 Recorded Speech Unknown Unknown Simultaneous

1.4 Thesis Overview

This document is composed of six chapters. Chapter II presents pertinent math-

ematical background to the methods used in testing as well as a review of related

research. Chapter III presents both the methodology and results of Tiers 1 and 2,

where the locations of the sound sources are known and emit sequentially. Chapter

IV presents the methodology of and results of Tiers 3 and 4, which allow for posi-

tioning using sound sources of unknown position that emit sequentially. Chapter V

presents the methodology and results of Tier 5, which allows for positioning using

sound sources of unknown location and simultaneous emission. Lastly, Chapter VI

provides a conclusion of research and discusses the potential for future related work.
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II. Background

2.1 Chapter Overview

This chapter provides a background on the differentiation and estimation meth-

ods employed, optimal speaker placements for sound based positioning, and recent

research related to sound based positioning. Section 2.2 covers Generalized Cross-

Correlation (GCC) Time Difference of Arrival (TDOA) estimation methods. Section

2.3 covers how the geometric arrangement of sound sources and microphones affects

the accuracy of location estimation and how the arrangement may be optimized for

best results. Finally, Section 2.4 reviews research related to sound based positioning.

2.2 Generalized Cross-Correlation for Time Difference of Arrival Mea-

surements

Knapp and Carter proposed the generalized correlation method for estimation of

time delay in 1976, which has been the pivotal reference for time delay estimation

between spatially separated sensors [5, 17]. A maximum likelihood estimator is de-

veloped as a pair of receiver prefilters for two signals followed by a cross correlator.

These signals are modeled as

ai(t) = si(t) + ni(t), aj(t) = sj(t) + nj(t), (1)

where s(t) represents a real signal and n(t) represents uncorrelated noise [17]. While

the GCC method assumes stationarity of both s(t) and n(t), it is commonly employed

in slowly varying environments where the signal and noise remain stationary over the

finite observation time [17]. This method for determining the time delay between

signals seeks the maximal value of the cross correlation function:
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ρ̂ = arg max
τ

Raiaj(τ) = arg max
τ

E {[ai(t)aj(t− τ)]} (2)

where ρ̂ is the estimate of the true time delay ρ and E {} denotes expectation [17].

However, with only a finite observation time, Raiaj(τ) must be estimated:

R̂aiaj(τ) =
1

T − τ

∫ T

τ

ai(t)aj(t− τ)dt, (3)

where T is the observation interval [17]. In order to produce a more accurate estimate

when a priori knowledge of the signal and noise statistics are available, several filtering

methods, including the Hannan-Thompson processor [17] may be applied to ai(t)

and aj(t). These methods filter the signals in order to weight the cross correlation

computation to frequencies with a higher Signal to Noise Ratio (SNR) in order to

give a less varied estimate of the time delay between sensors. The filters are shown in

Figure 1 as Hi and Hj, which modify the received waveforms, ai and aj, into bi and

bj respectively. bj is then delayed and multiplied with bi, integrated, and squared for

a range of time shifts τ until a peak, ρ̂ is discovered.

Delay

  ( )
2 Peak 

Detector

bj

0

T ρ

Hi

Hj

biai

aj

^

Figure 1. Received waveforms filtered, delayed, multiplied, and integrated for a variety
of delays until peak output is obtained. Adapted from [17].

When the filters Hi and Hj are uniform across the sampled spectrum, ρ̂ is the max

of the cross-correlation of ai and aj as shown in Equation (2). The Hannan-Thompson

filtering method sets the weight of the filters ψ , HiH
∗
j such that
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ψ =
|γij|2∣∣Gaiaj

∣∣ [1− |γij|2] , (4)

where G is the cross-power spectral density of the subscripted signals and γij is the

coherence estimate given as [17]

γij ,
Gaiaj√
GaiaiGajaj

. (5)

Filters such as the Hannan-Thompson filter help eliminate ambiguities caused

by narrowband sounds when microphone spacing is too far apart [2]. Under ideal

conditions, the Hannan-Thompson processor achieves the Cramér-Rao lower bound on

variance for delay estimators. However, as the SNR decreases, so does the effectiveness

of filtering techniques for delay estimation [17]. With a priori knowledge on the

spectra of the signal, filtering processes may allow for significantly improved time

delay estimates by obtaining non-integer delays from the sampling frequency [18].

Unless some characteristic about the spectra of the sound source is available, the

proposed filtering methods offer little to no advantage compared to the generalized

cross correlation estimate proposed in Equation (2).

2.3 Sound Source Arrangement Limitations

The ability to determine an accurate location estimate is limited by the geometric

arrangement of the microphones. As more indoor localization solutions are going

beyond proof of concept and prototype states, localization error should be given

more consideration considering sensor placement is often done by hand, leading to

otherwise avoidable inaccuracies [16].
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2.3.1 Dilution of Precision.

The uncertainties stemming from the geometric arrangement of the microphones

can be quantified through Dilution of Precision (DOP) values. DOP indicates how

much the fundamental ranging error is magnified by the geometric relation among the

speaker and microphone positions. Assuming all measurements of ρ̂ have the same

variance and those measurements are uncorrelated, DOP may be derived as

DOP =

√
Tr
[(

HTH
)−1
]
, (6)

where Tr indicates the trace matrix operation and H is a matrix containing the

derivatives of the range difference equations with respect to the unknown state vector.

H is more explicitly defined in Equation (18) of Section 3.2.7. Smaller DOP values

correspond to areas where microphone positioning estimation may be more accurate,

as shown in Figure 2B. Figure 2C depicts large DOP values corresponding to less

accurate microphone positioning estimations.

Since the proposed solution is limited to estimating a microphone on a 2D plane and

the related timing errors, Horizontal and Time Dilution of Precision (HTDOP), a

more specific form of DOP is considered. HTDOP only accounts for variance in 2D

coordinates and clock error of the H matrix.

2.3.2 Optimal Arrangement of Sound Sources and Microphones.

Concerning the geometric shape of a four element array, [25] shows that in an

ideal environment with minimized reverberation, a square array configuration of mi-

crophones provides optimal estimation accuracy in locating a sound source within

the area of the array. However, as reverberation increases, the ability to accurately

estimate the location of the sound source is dramatically affected. Thus, in noisy,

especially reverberant, environments, irregularly shaped array geometries often out-
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Figure 2. Illustration of DOP for range-based positioning [31]. (A) Two sound sources,
with measured distances from the mic, creating finite solutions of the microphone
location at intersections. (B) Same as A but showing errors on ranges, with the area
of possible microphone locations shown in green. (C) Same as B but with poor DOP,
creating a larger area of possible solutions.

perform regularly shaped arrays [14].

Another aspect to consider in designing the microphone and sound source array

shape is the distance between sound sources. There is a trade-off between relatively

small spaced arrays, which reduce ambiguity due to sound source wavelengths being

shorter than the spacing of the microphones, and large spaced arrays, which increase

resolution [3].

The optimal microphone array is highly dependent on the environment in which

the system is implemented, so there is not a single best solution for all real-world

applications. Because of this, heuristic methods such as the Genetic Algorithm are

implemented in order to select a near-optimal placement of a set number of micro-

phones and sound sources in a given room [14].
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2.4 Related Research

2.4.1 Section Overview.

There are several areas of research within sound based navigation. Due to the

ubiquity of cell phones with hard-wired speakers and microphones, the ability to locate

a cell phone through sound based methods is of interest. Many signals of interest have

concentrated power within the audible range, including gunshots and human speech,

which allows for a sound based navigation system to passively detect these signals.

Sound based methods have been tested on board Unmanned Aerial Vehicles (UAV)s

for collision avoidance and emergency vehicle detection. There are also new sensor

technologies being developed, including the Acoustic Vector Sensor (AVS), as well as

array calibration methods. Section 2.4.2 discusses locating cell phones via sound and

other signals of opportunity. Section 2.4.3 discusses research in gunshot detection.

Section 2.4.4 discusses research in detecting and locating human speech. Section

2.4.5 discusses developments in sound-based positioning from UAVs. Section 2.4.6

presents resent research involving sound location via the AVS, and finally, Section

2.4.7 discusses microphone and speaker array calibration and optimization.

2.4.2 Cell Phone Location.

With the unavailability of GPS in indoor scenarios, alternative methods for cell

phone navigation navigation have been a focus of research. By combining data from

several sensors typically available of cell phones, including accelerometers, magnetic

field sensors, gyroscopes, and sound sensors, [12] proposes a method to position a cell

phone through dead reckoning until GPS is available again. During testing, location

estimates showed on average a 1.8 m deviation from the true cell phone location after

traveling 50 m.

In [26], Schuller et al. present a sound based navigation technique that tracks

10



cellphone-equipped bicyclists on their route. Instead of estimating the exact coordi-

nates of the bicyclist, the solution only provides categorical results - a general section

of the bike path. The audio from the cyclist’s cellphone as he passes through a given

portion of the route is compared with typical auditory scenery of each section of the

route.

In [11], audio beacons are set up to allow cell phones to determine their location

in an indoor environment. Similar to [26], instead of estimating exact coordinates,

the results only estimate the room in which the cell phone is, not the location within

the room. In addition, the audio beacons must contain a recognizable code - not

just ambient noise or people speaking within the room. Therefore, the approach only

allows for a cooperative relationship between the sound source and the cell phone.

However, the novelty of the research lies in the cost-effectiveness and wide adaptability

to mobile devices, including older and low-end models.

2.4.3 Gunshot Detection.

By comparing the TDOA of the audio signals from spatially separated micro-

phones, the location of the gunshot can be determined. Though a well-researched

field [1, 9, 22, 32, 33], gunshot detection is continually improving through sound-

based techniques that not only locate the source of the gunshot, but also classify

what type of weapon was fired. [32] has improved the accuracy of gunshot location

estimation and classification by as much as 30% compared to current methods by

modeling the natural noise of the environment as Symmetric Alpha Stable (SAS)

instead of the usually assumed Gaussian noise according to the Ensemble Empirical

Mode Decomposition data analysis method. The SAS distribution can be very simi-

lar to the Gaussian distribution, but better models heavy tailed phenomena, such as

noise in the audible frequency range [7, 32].
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2.4.4 Human Speech Localization and Isolation.

Of particular interest to the field of sound-based navigation research is tracking

human speech. The two roots of the problem are determining the location of the hu-

man subject, and once the subjects have been located, increasing the intelligibility of

speech for the speaker of interest. One method for determining the location of sound

sources is Steered Response Power (SRP) mapping [13]. Within a given area of in-

terest, the audio from an array of spatially distributed microphones is delay and sum

beamformed. Beamforming delays the audio from spatially separated microphones ac-

cording to the TDOA measurements so that all audio channels constructively combine

to raise the signal power at areas of coherent sound sources [20]. After the locations

of sound sources are determined, [30] implements Time-Frequency Masking (TFM)

techniques on the signal of interest, which raises the signal to noise ratio by main-

taining areas of the time frequency map corresponding to the signal of interest and

eliminating areas corresponding to noise sources. Results are measured according to a

Speech Intelligibility Index (SII), where a SII of < 0.25 indicates unintelligible speech,

0.25 < SII < 0.5 indicates speech intelligibility with concentrated listening, and SII

> 0.5 indicates clear speech intelligibility with eased listening [30]. The results show

that determining the locations of noise sources and masking the interference those

sources create significantly improves the SII compared to only beamforming without

masking, and in many cases increased the SII past the critical threshold of 0.25. The

primary disadvantage is the computational burden of simultaneously beamforming

on multiple sound sources, which currently prevents real-time applications. However,

the approach is well-suited for localization of the signal of interest and enhancement

of the SII in applications where post processing is acceptable. Both SRP mapping

and TFM are implemented and explained in more detail in Chapter V.
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2.4.5 Location from Unmanned Aerial Vehicles.

A critical aspect of employing a flight of UAV is ensuring collision avoidance

through formation control. A low computational cost solution is presented in [3]

to provide each UAV with the relative position of surrounding UAVs. Each UAV

was equipped with a four channel array of microphones in order to determine the

location of the source generated by piezoelectric transducers on other cooperative

UAVs. Future work proposes detecting the sound from the engine of other UAVs in

order to expand capabilities to locating non-cooperative UAVs.

In addition to locating other aerial vehicles, sound based navigation techniques

are being applied to locate narrow-band signals on the ground with hopes of locat-

ing emergency distress signals from whistles attached to most aircraft life vests [2].

This technique would allow a search team UAV to locate their subjects in night time,

through foliage or dust, fog, and smoke. The test used the same UAV and attached

microphone array from [3], but implemented a particle filtering localization technique

to recursively estimate the target location. The proposed technique overcame ambi-

guities in the TDOA measurements through knowledge of the UAV trajectory and by

computing the relative velocity from Doppler shift of the known distress signal. At a

range of 150 meters, the UAV successfully located both an emergency safety whistle

and a piezo alarm, both emitting constant, narrowband frequencies.

In [21], a UAV is equipped with a 16 channel microphone array and location esti-

mations are calculated through MUltiple SIgnal Classification (MUSIC). MUSIC al-

lows for accurate localization of sound sources by whitening high power noise through

implementing a noise correlation matrix. However, MUSIC as originally designed can

only account for spatially static noise sources. Several improvements to MUSIC are

compared according to likelihood of detection and the computational burden each

method imposed. One of the proposed improvements, MUSIC based on incremental
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Generalized Singular Value Decomposition (iGSVD-MUSIC), whitens noise similarly

to MUSIC, but allows for dynamic tracking of the noise sources and drastically reduces

the computational cost without sacrificing sound source localization accuracy. While

all results were post-processed, the lower computational cost of iGSVD-MUSIC would

allow for future research involving real-time sound source detection from a UAV.

2.4.6 Acoustic Vector Sensors.

The recent technological advancement of the AVS, developed by Microflown Tech-

nologies, requires far fewer sensors in an array compared to a traditional microphone

array. Typical microphones only measure sound pressure, the scalar component of

sound waves. The AVS also measures the the vector component of sound waves,

acoustic particle velocity. As the sound wave passes two parallel, thin, heated wires,

the first wire cools before the second, giving an indication of the acoustic particle

velocity in one dimension. With three orthogonal pairs of wires, the AVS provides

a 3d velocity. [4]. By measuring both sound pressure and acoustic particle velocity,

a single AVS can determine the direction of a sound source. Given a moving sound

source, one AVS can estimate the distance to the sound source as well [4]. With an

array of AVSs, the accuracy of sound source location estimates are comparable to

traditional microphone arrays with many more channels [8]. Several applications of

the AVS have been researched, including the localization and tracking of aircraft [8],

multiple sound source tracking [4], RPG detection, and sense and avoid capabilities

onboard UAVs [9].

2.4.7 Audio Array Calibration and Optimization.

Because sensor placement by hand often leads to measurement inaccuracies [16],

an approach is presented in [23] to directly recover the location of both microphones
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and sound sources in a 3D environment from TDOA measurements. By locating all

of the microphones and sound sources, the system can be calibrated relative to the

location of one of the sensors, limiting sensor placement inaccuracy. The proposed

method requires an array of at least 10 microphones and 5 sound sources or 10 sound

sources and 5 microphones in order to simultaneously solve for the locations of all

components in the array. When the solution is restricted to a 2D environment, at

least 8 microphones and 4 sound sources or 8 sound sources and 4 microphones are

required. The approach has been tested using simulated data with no noise and

recovers positions of the microphones and speakers relative to a reference microphone.

The next stage of research consists of expanding testing to real world data.

While the accuracy of location estimates in sound-based navigation is crucial,

the processing time to compute the estimates must also be considered in order to

implement real-time solutions. If the estimate takes too long to calculate, the estimate

may not provide any useful information on the location of the object of interest. As

the number of sensors in the array increases, the computational burden of processing

a solution increases exponentially. In order to reduce the time to estimation, [16]

developed a method to determine a sensor arrangement with a minimal number of

sensors for a given sound source configuration that provides an estimate within 1.5

times the optimal solution.
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III. Positioning with Sequential Sound Sources at Known
Locations

3.1 Chapter Overview

As the initial stage, the results of Tier 1 provide a proof of concept for sound

based navigation and set the foundation for more complicated real-world scenarios.

The goal of Tier 1 was to locate the mobile microphone based on the differences in

arrival time of the signals from four sound sources. In this tier, the sound sources were

speakers with known locations, emitting a short duration impulse as the signal. The

four sound sources played the signal successively at precisely timed intervals, which

eliminated the need for signal source differentiation. The order in which the signals

played determines the sound source from which sound source the signal originated.

The tests were performed indoors in a low-noise facility using a high fidelity MXL-604

microphone as the object to be located.

In Tier 2, the time that the sound sources emit signals relative to one another

was unknown. In order to maintain accurate positioning capabilities with unknown

signal timing, the solution for Tier 2 introduced a reference microphone with known

location. Comparing the audio of the reference and mobile microphone allows for

TDOA calculations as the basis for the location estimation instead of Time of Arrival

(TOA) measurements. Table 2 summarizes the conditions of testing for Tiers 1 and

2.

Table 2. Conditions of testing for Tiers 1 and 2.

Tier
Sound Source

Type
Sound Source

Timing
Sound Source

Location
Playback

1 Impulse Known Known Successive
2 Impulse Unknown Known Successive
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This chapter covers the methodology used in Tier 1 testing and data processing

in Section 3.2, followed by the results and analysis of data from Tier1 in Section

3.3. Section 3.4 discusses the methodology improvements to allow for TDOA-based

location estimation. Section 3.5 presents the results of Tier 2 tests and Section 3.6

summarizes the findings of Tiers 1 and 2.

3.2 Tier 1 Methodology

3.2.1 Section Overview.

This section covers covers the methodology of data collection and location estima-

tion for Tier 1. Many of the methods presented in this section are also implemented

in later tiers. Topics discussed in this section include truth data collection, audio

signal collection and differentiation of trials and sound sources, TOA measurement

formation, receiver clock drift correction, normalization of TOA measurements, and

estimation of the mobile microphone position from TOA measurements. Figure 3

visualizes both the test area and the progression of the solution for Tier 1 tests.

17



Se
q

ue
nt

ia
l A

u
d

io
 R

ec
or

d
in

g

Test Area

Mobile Mic

Speaker 1 Speaker2

Speaker 4Speaker 3

Vicon Cameras

x50

TOA Estimation

Drift 
Correction

TOA Normalization
LSE 

Estimation

Mobile Mic 
Location 

EstimatesTOA Estimates

K
no

w
n

 S
p

ea
ke

r 
Lo

ca
ti

o
n

s

Initial 
Location

Guess

Temporal Signal 
Differentiation

Figure 3. Methodology for obtaining mobile microphone location estimates in Tier 1.
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3.2.2 Truth Data Collection.

A Vicon motion capture system provided truth data on the positions of the four

sound sources and the mobile microphone. Each object was affixed with four reflective

sphere markers, shown in Figure 4a, which the Vicon cameras tracked to determine

the location and orientation of the object. One of the four reflective markers is lo-

cated at the center of the speaker cone or microphone head, which was designated as

the reference coordinates of the object, shown by the intersection of the colored axes

in Figure 4b. Prior to sound based testing, the Vicon system produced one hundred

location samples of each stationary object. The averages of the samples are assumed

to be the true known coordinates of each object. Using the true coordinates, the true

distance between each object was calculated as a standard for the estimated distances.

(a) (b)

Figure 4. (a) Microphone with four reflective spheres tracked by Vicon cameras
mounted on the wall in the background. (b) Virtual rendering of the microphone
location and orientation in Vicon Software.
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3.2.3 Signal Collection and Differentiation.

An impulse signal was played through each speaker successively; after the signal

played from the first speaker, the remaining three speakers played the same signal

0.5 seconds after the previous speaker. Successive playback of the signals eliminated

the need for more robust signal differentiation methods by temporally separating the

signals. A more complex solution that successfully differentiates between simultane-

ously emitting sound sources is proposed in Chapter V. After all four signals have

played, two seconds of silence separated the end of the trial from the beginning of the

next. 100 trials were performed for each testpoint. Once all trials of a testpoint were

complete, the recording was then sectioned into the four second-long trials as shown

in Figure 5.
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Figure 5. Example of single audio recording separated into five trials.
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3.2.4 Time of Arrival Estimation.
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Figure 6. Peaks detected in temporally separated sound source playback

In each trial, the times corresponding to the four maximum values spaced at least

0.5 seconds apart were set to be Ta, the measured arrival time of the signals from

the sound sources to the mobile microphone. Example values in the vector Ta are

shown in Figure 6 as the peak location markers. Arrival times are measured relative

to a constant but arbitrary transmission time for each sound source, Tt. Multiplying

by the speed of sound, c, forms the range estimates of the trial:

ρ = c (Ta −Tt). (7)

Because the TOA measurement is dependent on the speed of sound, inaccuracies in

the estimating the speed of sound affect the TOA estimate. Before each test was

performed, the temperature was measured in order to calculate the speed of sound in

the the test facility:

c = 331.3

√
1 +

θc
273.15

[m/s] (8)

where θc is temperature in degrees Celsius [27].
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3.2.5 Drift Correction.

In TOA based solutions as used in Tier 1, the accuracy of the results depends

on the consistency of the receiver clock so that the recorder captures audio exactly

at the sampling frequency, 44100 Hz for the duration of the recording. Because the

signals from each of the four speakers played sequentially in precise intervals, receiver

clock error caused TOA values to appear as if the signal was emitted slightly before

or slightly after the expected interval. The receiver clock had a near linear drift,

approximated by the mean difference in arrival times between each trial and the

following trial:

drift ≈ 1

N − 1

N−1∑
n=1

ρn − ρn+1

∆t
=

ρ1 − ρN
(N − 1)∆t

, (9)

where n represents the trial number, N is the total number of trials and ∆t is the

duration of each trial. This drift value was used to correct TOA estimates for both

drift between trials as well as drift between signals from the four sound sources within

the same trial. The effect of the drift corrections are shown in the comparison of

Figures 7a and 7b. Because subsequent tiers all used TDOA-based solutions where

clock errors cancel out in differencing, drift correction was only necessary in Tier 1.
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Figure 7. (a) Range measurements before drift correction due to receiver clock error.
(b) Range measurements after drift correction is applied.
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3.2.6 Normalization of Data Through Correlated Additive White Gaus-

sian Noise.

Assuming no quantization error, the variance in range measurements was primar-

ily caused by thermal and environmental noise. Given the assumption is true, the

distribution of measurements may reasonably be assumed to follow a zero mean Gaus-

sian model [29]. However, the signals were recorded in the audible frequency range,

with a sampling rate of fs = 44.1 kHz. Therefore, the resolution of range measure-

ments is limited to ± c
2fs

, approximately ±4 mm. In an otherwise quiet room, the

variation of measurements was often smaller than the resolution due to the sampling

rate, causing quantization error. With quantization error, the distribution of location

estimates concentrated to sparse discrete values. In order to make the distribution

follow a more Gaussian pattern, zero mean Additive White Gaussian Noise (AWGN)

with a covariance equal to the covariance of the original estimates was added to esti-

mates. The AWGN must be properly correlated in order to maintain the orientation

and eccentricity of the error ellipse, as shown in Figure 8. Adding noise also increased

the variance in location estimates, causing the error ellipse to be slightly larger. While

the increased variance in the location estimates is not ideal, AWGN allowed use of

DOP based analysis as described in Section 3.3.1.
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Figure 8. (a) Location estimation without correlated AWGN. The 100 estimates are
constrained to six points due to quantization error. (b) Location estimation with
correlated AWGN.

3.2.7 Microphone Position Estimation.

The normalized and drift corrected range measurements from the kth sound source

to the mobile microphone, m, are distributed as

ρsm = [ρs1m , ρ
s2
m , · · · , ρskm , · · · , ρsKm ]T ,

(10)

where K represents the total number of sound sources. The location of the mobile mi-

crophone, [xm , ym]T , is always unknown. Including receiver clock error, the unknown

state vector contains all quantities to be estimated:

x =


xm

ym

δt

 , (11)
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where δt is the clock error measured as a distance, relative to the speed of sound. In

Tier 1, the locations of the K sound sources,

[
xs ys

]
=



xs1 ys1

xs2 ys2
...

...

xsK ysK


, (12)

are known values according to the truth data acquired through the Vicon system.

Range measurements from the kth sound source to the mobile microphone are related

to x and xs as

ρskm =

√
(xsk − xm)2 + (ysk − ym)2 + δt+ υk (13)

where υk represents white Gaussian noise associated with the kth sound source. Equa-

tion (13) can be rewritten as

ρskm = h(x) + υk. (14)

h(x) =

√
(xsk − xm)2 + (ysk − ym)2 + δt. (15)

Represented in matrix form to account for range measurements from all measured

sound sources,

ρsm = h(x) + υ. (16)

h(x) is a nonlinear vector function [29] which may be solved through both closed form

or estimated solution techniques. In Tier 1, an iterative Least Squares Estimation
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(LSE) method is applied.

In order to determine a simple approximate solution to estimate x, h(x) can be

linearized by considering only the first two terms of the Taylor series expansion about

a reference point,

x0 =

[
x0 y0 δt0

]
, (17)

such that H is a matrix of partial derivatives of the measurement vector with respect

to the state vector, evaluated at x0:

H =
∂h(x)

∂x

∣∣∣∣
x=x0

. (18)

Note that x0 should be close enough to the real value of x such that the linearization

of h is a valid assumption [29]. In Tier 1, x0 is initialized at the center of the test

area. However, in the remaining tiers, where TDOA measurements are used, a closed

form solution provides a more accurate initial x0. In the case of Tier 1, H may be

explicitly defined as:

H =


∂h1(x)
∂xm

∣∣∣∣
x=x0

∂h1(x)
∂ym

∣∣∣∣
x=x0

∂h1(x)
∂δt

∣∣∣∣
x=x0

...
...

...

∂hK(x)
∂xm

∣∣∣∣
x=x0

∂hK(x)
∂ym

∣∣∣∣
x=x0

∂hK(x)
∂δt

∣∣∣∣
x=x0

 , (19)

where the subscript on h denotes which sound source the derivative is taken relative

to. Since δt is linear with respect to the reference point, ∂h(x,k)
∂δt
|x=x0 is 1 for all k.

Equation (19) can be simplified to

H =


∂h1(x)
∂xm

∣∣∣∣
x=x0

∂h1(x)
∂ym

∣∣∣∣
x=x0

1

...
...

...

∂hK(x)
∂xm

∣∣∣∣
x=x0

∂hK(x)
∂ym

∣∣∣∣
x=x0

1

 . (20)
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We define the error in the nominal estimation values, ∆x, as used in the least squares

solution solving for an estimate of ∆x as xtrue = x0 + ∆x,

∆̂x =
(
HTH

)−1
HT∆ρ. (21)

In order to obtain a more accurate estimate, ∆̂x is added to x0 to become the new

value of x0:

x0new = x0old + ∆̂x (22)

Equations (20 - 22) are then recalculated with the updated x0. Through each

iteration, the values of x0new theoretically converge to estimate the value of x. How-

ever, the initial x0 may not be close enough to the real value of x to allow for a valid

linearization, or the cost surface created may have local maxima to which the LSE

may converge. An initial x0 that is too inaccurate may cause a divergent solution to

x. If the LSE solution produces a convergent result, the last calculated x0 is assigned

as x̂, the estimate of the state vector. In Tier 1, all tests produced solutions that

converged to the correct locations.

3.2.8 Methodology Summary.

The methodology for Tier 1 can be summarized through Figure 3. First, the true

mobile microphone and speaker locations are determined using the Vicon system.

The audio from each speaker is then sequentially played while the mobile microphone

records for one hundred trials. The single audio file is then separated into trials. Each

recorded impulse in the trial is then attributed to its corresponding speaker based on

the order in which it was recorded. Using the known speaker locations and timing

of the impulses, TOA estimates are formed. Due to receiver clock error, the TOA
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measurements must be corrected for drift. The measurements are then normalized

to offset quantization error. Finally, an iterative LSE process produces the estimated

mobile microphone location. The same general method of microphone positioning is

used in later tiers, with changes compensating for fewer assumptions on the signals

and environment.

3.3 Tier 1 Results

3.3.1 Methods for Data Characterization.

Measurement Domain Analysis.

For each microphone test location, the TOA range measurements were compared

to the true distances from the microphone to each speaker, and the results are pre-

sented in histograms (Figure 11 is one example). Positive values indicate the distances

derived from the truth data were greater than the distances estimated via sound

whereas negative values indicate the distances derived from the truth data were less

than the distances estimated via sound.

Error Ellipses.

A confidence error ellipse characterizes the distribution of location estimates. The

analyses of results for all tiers use 95% confidence error ellipses. If a test were to be

repeated again with 100 trials, 95 of the 100 location estimates should be expected

to fall within the 95% confidence error ellipse of that testpoint. The center of the

ellipse is the mean location of the estimates. The covariance of the estimates in the

x and y dimensions determines the size and eccentricity of the ellipse. As the overall

variance of the data increases, the size of the ellipse increases. There is often more

variance in one dimension than the other, in which case, the ellipse is more eccentric

and orients lengthwise in the direction of greater variance.
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Position Error.

Mean values and standard deviations for error in the x and y directions are re-

ported for each testpoint as well as the Distance Root Mean Squared (DRMS). DRMS

is a single value metric that quantifies the estimation accuracy and precision of a par-

ticular testpoint and allows for comparison to other testpoints. If the nth solution is

represented as [x̂mn , ŷmn ]T and the true position is [xm, ym]T , then the DRMS of N

solutions is calculated as

DRMS =

√√√√√√
N∑
n=1

(
(x̂mn − xm)2 + (ŷmn − ym)2

)
N

, (23)

DRMS accounts for both the bias of the estimates and variance between the estimates

of each trial.

Clock Error.

The LSE estimation not only solves for the location of the mobile microphone, but

also the estimated clock error of the receiver for the TOA or TDOA measurements.

For TOA measurements in Tier 1, the clock error value itself does not provide useful

information, since the offset is relative to an arbitrary point in time, as mentioned in

Section 3.2.4. Even with an arbitrary time offset, the LSE solution provided consis-

tent clock error estimates with an approximately normal distribution for all tests. So,

the standard deviation of the clock error is reported to demonstrate the consistency

of the timing estimate for use in applications with a non-arbitrary reference time. For

Tiers 2 and beyond, which use TDOA measurements, both clock error estimate means

and standard deviations are reported to demonstrate the accuracy of the estimated

state vector. Because clock errors cancel out in TDOA measurements from the same

receiver, the true time offset is considered to be zero.
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Comparison to Dilution of Precision.

As discussed in Section 2.3.1, DOP calculations quantify how well location esti-

mates can be made from the measured TOA values. DOP is only dependent on the

configuration of the microphone and sound sources relative to one another. With fixed

sound source locations, Figure 9 visualizes how well the solution may be expected to

work for any mobile microphone location in the testing area. Because DOP does not

change in Tier 2 by introducing a single reference microphone, Figure 9 may also be

referenced for Tier 2 tests. Table 3 contains the DOP values at each of the testpoints

for Tiers 1 and 2.
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Figure 9. DOP map of testbed for Tier 1 and 2 tests. Color corresponds to DOP as a
function of the location of the mobile microphone.
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3.3.2 Results by Testpoint.

Figure 10 shows the location of each testpoint in the testing area. Because all

tiers use the same testpoints, Figure 10 may be used as reference for all further tiers.

Table 3 provides summary results for Tier 1 at each testpoint.
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Figure 10. Locations of sound sources and testpoints for the mobile microphone

Table 3. Results for Test Performed in Tier 1

Testpoint

Approx.

DOP
Clock Error (µs) Position Error (cm)

Coords.
σδt x̄ σx ȳ σy DRMS

0 (0,0) 1.000 39.98 0.17 0.28 -0.09 0.19 0.39

1 (1,-2) 1.069 35.31 -0.98 0.30 -0.23 0.17 1.06

2 (-2,-2) 1.075 23.74 0.91 0.21 -0.06 0.18 0.95

3 (2.9,2.9) 1.171 17.38 0.95 0.21 -0.28 0.33 1.07

4 (4,-2) 2.387 56.04 0.25 0.47 0.90 0.21 1.06

5 (-5,-5) 7.149 144.13 -1.99 -2.81 1.29 1.48 3.96
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Testpoint 0.

Testpoint 0 is located at the center of the test area, equidistant from each sound

source as shown in Figure 12a. With the central location of the microphone, the speed

of sound computed in Equation (8) does not adversely affect the location estimate.

As shown in Figure 11, there is a slight positive bias on the order of 3-5 mm in

the distribution of error for each distance estimate between the mobile microphone

and each speaker. A similarly ordered bias is seen in Figure 12b with the location

estimation with estimates averaging slightly right of the true location. All estimates

fall within the area of the microphone diaphragm.
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Figure 11. TOA measurement error distribution at Testpoint 0
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Figure 12. Estimated location of mobile microphone at Testpoint 0

Testpoint 1.

As seen in Figure 14a, none of the distances from the microphone to speaker

are the same at Testpoint 1, where errors in speed of sound model or similar errors

could affect the accuracy of TDOA measurements. Figure 13 shows inconsistency

in the distance measurement errors between sound sources, with Speakers 1 and 3

showing positive bias, speaker 2 nearly unbiased, and Speaker 4 showing negative bias.

The inconsistency of the biases affects the LSE estimation by moving the location

estimates to the left and slightly below the true mobile microphone position. Figure

14b shows approximately half of the estimates within the area of the microphone

diaphragm.
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Figure 13. TOA measurement error distribution at Testpoint 1
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Figure 14. Estimated location of mobile microphone at Testpoint 1
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Testpoint 2.

As shown in Figure 16a, Testpoint 2 is equidistant from Speakers 1 and 4, and

co-linear with Speakers 2 and 3. Because of the equidistance between Speakers 1 and

4, similar biases in the measurement domain were expected. However, as shown in

Figure 15, the bias for Speaker 1 was around 4 mm, but Speaker 4 showed a bias

around 16 mm. The location estimates pulled toward Speaker 4, possibly due to the

high measurement bias. Over half of the estimates were contained within the area of

the mobile microphone diaphragm as shown in Figure 16b.
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Figure 15. TOA measurement error distribution at Testpoint 2
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Figure 16. Estimated location of mobile microphone at Testpoint 2

Testpoint 3.

In order to test the effects of close proximity of the mobile microphone to a sound

source, Testpoint 3 is located adjacent to Speaker 2, as shown in Figure 18a. Slight

measurement biases were present from Speakers 2, 3, and 4 as shown in Figure 17.

These biases caused the location estimates to move right and slightly below the true

microphone location. Approximately half of the estimates were contained within the

area of the mobile microphone diaphragm as shown in Figure 18b.
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Figure 17. TOA measurement error distribution at Testpoint 3
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Figure 18. Estimated location of mobile microphone at Testpoint 3
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Testpoint 4.

Testpoint 4 is outside of the perimeter of the four speakers, as shown in Figure

20a, where the DOP is significantly greater compared to values inside the speaker

perimeter. The effects of increased DOP are shown through the increased size of the

95% confidence error ellipse in Figure 20b. Also of note is the orientation of the ellipse

towards the center of the test area.
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Figure 19. TOA measurement error distribution at Testpoint 4
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Figure 20. Estimated location of mobile microphone at Testpoint 4

Testpoint 5.

Figure 22a shows testpoint 5 is far outside of the speaker perimeter, in an area

with much higher DOP relative to the other test locations. While the biases in the

measurement domain shown in Figure 21 were similar to biases present in Testpoints

1-4, the larger DOP magnified the bias in the location estimation to be much greater

than previous tests with lower DOP. As shown in Figure 22b, estimates were biased

to the left and below the true microphone location. The large variance in estimates

led to an error ellipse much greater in area than seen in previous testpoints. The

DRMS for Testpoint 5 was 4.04 cm, also significantly larger than previous testpoints.
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Figure 21. TOA measurement error distribution at Testpoint 5
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Figure 22. Estimated location of mobile microphone at Testpoint 5
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3.4 Tier 2 Methodology

3.4.1 Section Overview.

In Tier 2, the signals are still emitted sequentially, but the times that the signals

are emitted are no longer known nor consistent. Because exact signal timing is not

known, TDOA measurements must be used instead of just TOA measurements. The

methodology for Tier 2 is summarized in Figure 23. New methods introduced include

TDOA estimation, location estimation through closed form solutions, and TDOA LSE

location estimation. Drift correction was a necessary correction to TOA estimates

in Tier 1 because of receiver clock error. However, with the introduction of TDOA

estimates, receiver clock error cancels out, making drift correction unnecessary. With

the exception of methods discussed in this section, all testing was performed in the

same manner as Tier 1.
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3.4.2 Time Difference of Arrival Estimation.

The peaks in both the mobile and reference microphone signals are measured in

the same way as Tier 1, where Tm represents the time of the peaks detected from

the mobile microphone and Tr represents the time of the peaks detected from the

reference microphone. TDOA measurements are formed by

∆Tmr = Tm −Tr =


T s1m

...

T sKm

−

T s1r

...

T sKr

 . (24)

where superscripts denote the respective sound source. The clocks measuring the

TOAs from the mobile microphone and the reference microphone may be separate,

and in practical scenarios, will be. However, the clock error between the mobile

receiver clock and reference receiver clock is estimated as part of the LSE solution,

and does not affect position estimate accuracy. Multiplying TDOA measurements by

the speed of sound forms the range difference measurements of the trial:

∆ρmr = c∆Tmr =


ρs1mr

...

ρsKmr

 (25)

3.4.3 Location Estimation Through Closed Form Solutions.

With the introduction of TDOA measurements, a closed form solution to x̂ is

possible [19]. In the absence of measurement error, the closed form solution produces

the exact location. However, measurement errors generally cause the closed form

solution to be less accurate than a convergent LSE estimation. The closed form

solution is still useful, because it is often accurate enough to provide an initial x0

that leads to a convergent result from the LSE estimation, instead of initializing x0
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to the center of the test area, as done in Tier 1.

The closed form solution to the mobile microphone location is given by [19] as

x̂cf = (STS)−1ST (z− ρR̂s) +

xs1
ys1

 , (26)

where x̂cf is the closed form solution of the mobile microphone position and S is the

regressor matrix of sound source locations relative to the first sound source such that

S ,


xs2 − xs1 ys2 − ys1

...
...

xsK − xs1 ysK − ys1

 , (27)

z is a vector such that

z ,
1

2


(xs2 − xs1)2 + (ys2 − ys1)2 − (∆ρs2mr −∆ρs1mr)

2

...

(xsK − xs1)2 + (ysK − ys1)2 − (∆ρsKmr −∆ρs1mr)
2

 . (28)

R̂s = ρTS(STS)−2STz±
√

[ρTS(STS)−2STz]2 + zTS(STS)−2STz · [1− ρTS(STS)−2STρ]

ρTS(STS)−2STρ− 1
.

(29)

In the above equations, the subscripts s1, . . . , sK represent the speaker number.

When at least three of the sound sources are not co-linear, then the matrix S has full

rank. However, it is possible for Equation (29) to have imaginary roots, such that

the solution to R̂s and the location of the mobile microphone cannot be determined

[19]. In such a case, x0 would have been initialized to the center of the test area. If

the closed form solution produced a valid, real-valued estimate, x0 was initialized as

x̂cf for the LSE. In all tests, the closed form solution produced a valid estimate.
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3.4.4 Least Squares Location Estimation.

The range difference measurement for the kth sound source relative to the mobile

and reference microphones is

∆ρskmr = ρskm − ρskr + υk (30)

where ρskr is the range from the kth sound source to the reference microphone and ρskm

is the range from the kth sound source to the mobile microphone such that

∆ρskmr =

(√
(xsk − xm)2 + (ysk − ym)2 + δtm

)
−
(√

(xsk − xr)
2 + (ysk − yr)

2 + δtr

)
+υk.

(31)

The difference between the mobile clock error, δtm, and the reference clock error, δtr

is given as δt, simplifying Equation (31) to

∆ρskmr =

√
(xsk − xm)2 + (ysk − ym)2 −

√
(xsk − xr)

2 + (ysk − yr)
2 + δt+ υk. (32)

In testing, the mobile and reference audio were recorded using the same clock, so

δt is expected to be 0. However, in scenarios were the mobile and reference audio

are recorded on separate systems, δt is the difference in time between the mobile and

reference clocks.

Equation (32) may be further simplified as

∆ρskmr = h(x) + υk, (33)

h(x) =

√
(xsk − xm)2 + (ysk − ym)2 −

√
(xsk − xr)

2 + (ysk − yr)
2 + δt. (34)
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Represented in matrix form for range measurements from all sound sources,

∆ρsmr = h(x) + υ. (35)

A process similar to the LSE algorithm outlined in Tier 1 was then implemented in

order to produce x̂ from TDOA measurements.

3.5 Tier 2 Results

Results are presented for select testpoints in Tier 2 in this section. Because results

produced similar findings through measurement domain analysis to Tier 1, measure-

ment domain results are not discussed in depth for any of the remaining tiers. As

mentioned in Section 3.3.1, both the mean value and variance of the time offset are

included in the results of Tier 2 and all following tiers.

Table 4. Results for Test Performed in Tier 2

Testpoint
Approx.

DOP
Clock Error (µs) Position Error (cm)

Coords.
δ̄t σδt x̄ σx ȳ σy DRMS

0 (0,0) 1.000 23.39 10.73 -0.46 0.24 0.12 0.34 0.63
1 (1,-2) 1.069 31.22 5.15 -0.56 0.34 -0.53 0.43 0.94
2 (-2,-2) 1.075 48.29 8.18 1.16 0.38 0.46 0.43 1.37
3 (2.9,2.9) 1.171 25.21 6.24 -0.45 0.17 0.488 0.21 0.71
4 (4,-2) 2.387 32.02 22.60 1.11 0.72 -0.70 0.42 1.56
5 (-5,-5) 7.149 82.97 49.96 0.54 1.23 1.24 1.48 2.34
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Figure 24. Estimated location of mobile microphone at Testpoint 0

The test configuration and results for Testpoint 0 are shown in Figure 24. The

results for Testpoint 0 show TDOA measurements when signal timing is not known

(Tier 2) provide slightly different results to using TOA measurements when timing is

known as in Tier 1. While the bias is of similar magnitude, estimates are slightly left

of the true microphone location. All estimates fell within the area of the microphone

diaphragm as shown in Figure 24b. The DRMS increased almost twofold to 0.63 cm.

Because TDOA is a difference of two TOA measurements, overall measurement noise

is expected to increase, leading to higher positioning error despite equivalent DOPs

seen in Tier 1.
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Figure 25. Estimated location of mobile microphone at Testpoint 1

The test area configuration and results for Testpoint 1 are shown in Figure 25.

The bias was similar between Tiers 1 and 2 for Testpoint 1, pulling slightly below

and left of the true microphone location. However, the shape of the error ellipse in

Tier 2 is slightly more circular than the error ellipse shown for Tier 1. The majority

of estimates still fell within the area of the microphone diaphragm as shown in Figure

25b. The DRMS was 0.94 cm, slightly less than the DRMS of Tier 1 for Testpoint 1.
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Figure 26. Estimated location of mobile microphone at Testpoint 2

Figure 26 shows the test area layout and results for Testpoint 2. Approximately

one third of the estimates fell within the area of the microphone diaphragm as shown

in Figure 26b. While the bias of the estimates was similar to results from Tier 1, the

spread of the estimates was slightly larger, causing the DRMS to increase by 42 mm

to 1.37 cm. The the mean clock error was 48 µs with a standard deviation of 8.18 µs,

one third the size of the standard deviation from Tier 1.
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Figure 27. Estimated location of mobile microphone at Testpoint 3

The accuracy of TDOA measurements was not altered by the close proximity of

Speaker 2 to the mobile microphone, as seen in Figure 27a. Both the bias and variance

of the estimates were much less than comparable results from Tier 1, leading to a

DRMS of 0.71 cm. As seen in Figure 27b, 97 of the 100 estimates fell within the area

of the microphone diaphragm. The accurate results for Tier 2 at this testpoint form a

basis of comparison for Tiers 4 and 5, where the accuracy is degraded due to changes

in TDOA acquisition.
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Testpoint 4.
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Figure 28. Estimated location of mobile microphone at Testpoint 4

Compared to other Tier 2 testpoints, TDOA-based results for Testpoint 4 suffered

in precision, as shown in Figure 28. The DOP of Testpoint 4 was 2.4, while previous

testpoints were all less than 1.1, which helps explain the higher variance in the location

estimates. While the orientation of the error ellipse was similar to the error ellipse

for Testpoint for in Tier 1, the spread increased to make the error ellipse wider.
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Testpoint 5.
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Figure 29. Estimated location of mobile microphone at Testpoint 5

Due to the high DOP, 7.15, at Testpoint 5, the variance of location estimates was

much higher than the previous testpoints for Tier 2. As shown in Figure 29, 26 of the

100 estimates fell within the area of the microphone diaphragm. While the variance

of location estimates was greater for Testpoint 5 than Testpoint 4, the bias was less,

allowing for a similar DRMS of 2.34 cm.
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3.6 Chapter Summary

Tier 1 used TOA measurements in an LSE to locate the mobile microphone from

sound sources of known location with known signal structure and known timing emit-

ting sequentially. Estimated drift correction was applied to compensate for receiver

clock drift. Results showed cm-level accuracy, with the majority of estimates falling

within the area of the microphone diaphragm.

Tier 2 used TDOA measurements in a similar LSE to locate the mobile microphone

from sound sources of known location with known signal structure and unknown

timing emitting sequentially. Because TDOA measurements cancel receiver clock

error, drift correction was no longer necessary. Results were similar to those of Tier

1 with slight increases in the size of the error ellipses at several testpoints.

While the error in location estimation for each testpoint was relatively small com-

pared to the size of the microphone diaphragm, there are several causes that may

be attributed to the bias and variance of the estimates. Temperature measurements

have a significant effect on the calculated speed of sound in Equation (8). For exam-

ple, a variation of 1◦ Fahrenheit alters the speed of sound by approximately 0.3 m/s.

While a calibrated thermocouple thermometer was used to measure temperature, the

display only provided whole number Fahrenheit readings, which may cause bias due

to the limited number of significant figures.

For Tier 1 experimentation, the clock drift correction in presented in Section 3.2.5

assumes a linear clock drift. The correction may have not been completely effective if

the receiver clock drift had nonlinear effects. If the clock drift is nonlinear, the clock

drift correction would still allow for bias in TOA measurements. Tier 2 and beyond

implement a TDOA based solution which differences out clock error, making clock

drift correction no longer necessary.

Noise generated in the test facility may lead to incorrect TOA estimates while de-
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tecting peaks in the audio signals in Section 3.2.4. No noise sources were loud enough

to generate a false peak, which would created a significant outlier compared to the

other trials. However, it is plausible that noise in combination with the reverberant

effects of the room and the playback of the speaker may have caused a false peak in

the samples immediately following a true peak. A false peak of this kind would cause

a TOA estimate slightly later than the true TOA, and result in a biased location

estimate.

Finally, another cause of error is the calibration of the Vicon system to obtain

truth data. The reflective spheres may not be exactly centered to the microphone

and speaker diaphragms, which would cause the locations detected by the Vicon

system to not be accurate. In addition, the Vicon system could have estimation

errors and is subject to higher variance in its estimates for objects further from the

center of the room due to DOP based effects.
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IV. Positioning with Sequential Sound Sources at Unknown
Locations

4.1 Chapter overview

In Chapter III, the solution required known locations of the sound sources which

were acquired through the Vicon system in order to produce accurate location esti-

mates of the mobile microphone. Tier 3 presents a more versatile system that does not

require a priori knowledge of the sound source locations. TDOA measurements be-

tween the mobile microphone and each of the reference microphones were differenced

to estimate not only the location of the mobile microphone, but also the locations

of each sound source. By introducing six more reference microphones with known

locations, each object was located with increased precision, and the DOP in the test

area was reduced relative to previous tiers.

Before Tier 4, sound sources generated an impulse to allow for simplified peak de-

tection for TDOA measurements. Building towards a more practical implementation,

Tier 4 assumed the sound sources generate unknown coherent signals, such as human

speech. Tier 4 implements the GCC method [17], described in Section 2.2 , to obtain

TDOA measurements from more complex signal structures. Table 5 summarizes the

conditions of testing for Tiers 3 and 4.

Section 4.2 presents the new methods to implement the additional reference mi-

crophones in the solution for Tier 3. Section 4.3 discusses the results of tests for Tier

3. Section 4.4 presents the new methods necessary to allow for TDOA measurements

of unknown signals in Tier 4. Section 4.5 presents results for Tier 4 tests. Section 4.6

summarizes the methodology and results for Tiers 3 and 4.
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Table 5. Conditions of testing for Tiers 3 and 4.

Tier
Sound Source

Type
Sound Source

Timing
Sound Source

Location
Playback

3 Impulse Unknown Unknown Successive
4 Recorded Speech Unknown Unknown Successive

4.2 Tier 3 Methodology

4.2.1 Section Overview.

The methodology for Tier 3 is summarized in Figure 30. Methods updated for

Tier 3 include initial location estimation through a closed form solution and TDOA

based LSE of both sound source and speaker location. The Vicon system was still

used to acquire truth data for comparison and evaluation purposes, but no longer

provided sound source locations as a part of the solution. With the exception of

methods discussed in this section, all testing was performed in the same manner as

Tier 2.
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4.2.2 Location Estimation Through Cascading Closed Form Solution.

The LSE estimation method in Tier 3 solves for not only the mobile microphone

location, but also the unknown sound source locations. This more complex approach

requires initial location estimates of the mobile microphone and each sound source.

First, separate closed form solutions were used to estimate the location of each sound

source based on the known locations of the reference microphones. The range differ-

ences of Equations (26 - 29) are between the locations of the reference microphones

and one of the unknown sound sources. The x and y coordinates in Equations (27)

and (28) are the coordinates of the reference microphones relative the the locations of
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the first reference microphone. x̂cf was then assigned as the closed form estimate of

the sound source location. This closed form solution was applied to each sound source.

Then, a final closed form solution estimated the location of the mobile microphone

using the newly estimated sound source coordinates in Equations (27) and (28). This

closed form solution for the mobile microphone location is particularly susceptible to

error; any error in the closed form solutions of the sound source locations cascade into

the final mobile microphone closed form estimate. While increased error in location

estimation is undesirable, the closed form estimates were only used as initial values

for the LSE; the closed form estimates only have to produce general locations of the

mobile microphone and sound sources to allow a convergent LSE result.

4.2.3 Least Squares Estimation for Speaker and Mobile Microphone

Location.

The solutions of Tiers 1 and 2 required fixed, known locations of the sound sources.

Because only the x and y coordinates and the timing of the receiver were unknown,

the H matrix in Equation (20) required at least three linearly independent rows. In

other words, estimating a single-point solution only requires at least three spatially

separated sound sources with known locations to solve for the three unknown pa-

rameters. As Tier 3 does not assume a priori sound source locations are available,

the LSE algorithm was changed to estimate the location of the sound sources while

still producing an estimated location of the mobile microphone. In addition to re-

quiring at least three sound sources, the solution for Tier 3 also requires at least

three reference mobile microphones in order to estimate the location of the mobile

microphone. TDOA measurements were made for each range difference between the

mobile microphone and each reference microphone relative to each sound source. The

range difference from the kth sound source to the mobile microphone relative to the
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lth reference microphone is denoted as ∆ρskmrl . Likewise, the vector of measurements

for K sound sources and L reference microphones is

∆ρsmr =

[
∆ρs1mr1 , ∆ρs1mr2 , · · · ,∆ρ

s1
mrL

, ∆ρs2mr1 · · · ,∆ρ
sK
mrL

]T
(36)

.

Both K and L must be at least 3 in order to produce a single-point solution. The

unknown state parameter for Tier 3 is

x =

[
xm, ym, xs1 , ys1 , . . . , xsK , ysK , δt

]T
. (37)

where xm and ym denote the coordinates of the mobile mic, xs1 and ys1 through

xsK and ysK denote the location of each sound source, and δt denotes the receiver

clock error common to all microphones. Likewise, the initial state vector for the LSE

equation includes the initial estimates of the sound source locations:

x0 =

[
xm0 , ym0 , xs10 , ys10 , . . . , xsK0

, ysK0
, δt0

]T
. (38)

The H matrix is then constructed according to Equation (18) with the measure-

ment, unknown state, and initial state vectors from Equations (36 - 38). The resultant

LSE solution, x̂ from Equation (21), includes the estimated coordinates of the mobile

microphone and each sound source. Although estimating the location of mobile mi-

crophone and time offset was the main objective, the sound source location estimates

may be a useful byproduct in application.
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4.3 Tier 3 Results

4.3.1 Comparison of Dilution of Precision.

In previous tiers, the DOP was only dependent on the configuration of the mobile

microphone and sound sources with known location. In Tier 3, the solution estimates

the location of the mobile microphone and each sound source. Because the solution

uses additional reference microphones, the location of those reference microphones

also affects the DOP of Tier 3 results. Table 6 includes DOP values at each testpoint

for Tiers 3-5. Figure 31 is a DOP map of the test area for Tier 3. Because Tiers

4 and 5 use the same configuration of sound sources and reference microphones and

estimate the same quantities, Figure 31 may also be referenced for the related tests.

While the sound sources are at unknown locations, the sound sources are kept at

fixed locations for consistent testing. If the sound sources were to be relocated, DOP

values may change. Note that while DOP values less than one are uncommon in

other applications such as GPS, sub-unity DOP is possible [28]. GPS solutions are

typically limited to using one receiver and four satellites, whereas this configuration

utilizes all seven reference microphones and four sound sources.

4.3.2 Tier 3 Results.

Table 6 gives a summary of results for Tier 3 at each testpoint. Because of the

bias in measurements, a direct comparison between DOP and DRMS was difficult to

observe. DOP predicts higher variance in non-biased estimates at locations with a

given speaker and microphone configuration whereas DRMS accounts for both vari-

ance and bias. For Tiers 3-5, only select testpoints of interest with uncommon results

are discussed in depth.
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Table 6. Results for Test Performed in Tier 3

Testpoint
Approx.

DOP
Clock Error (µs) Position Error (cm)

Coords.
δ̄t σδt x̄ σx ȳ σy DRMS

0 (0,0) 0.5374 -13.68 0.76 3.51 0.15 0.69 0.15 3.58
1 (1,-2) 0.5938 -16.79 1.34 1.63 0.16 -0.76 0.17 1.65
2 (-2,-2) 0.5990 -78.12 0.67 -2.69 0.15 -1.19 0.16 2.95
3 (2.9,2.9) 0.6437 -84.32 0.64 -2.43 0.15 -1.45 0.16 2.24
4 (4,-2) 1.447 67.48 29.77 -0.98 0.25 0.89 0.17 1.24
5 (-5,-5) 4.554 -205.34 17.34 -6.03 0.48 -1.08 0.46 6.16
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Figure 32. Estimated location of mobile microphone at Testpoint 0

The test area configuration and results for Testpoint 0 are shown in Figure 32.

Despite the more complicated process of locating the mobile microphone using sound

sources with unknown locations, the estimates still fell within the general area of the

true locations. The bias of the estimations brought all estimates outside of the area of

the microphone diaphragm. As expected with the reduced DOP from using multiple

reference microphones, the size of the error ellipse was much less than previous tiers

as shown in Figure 32b. The DRMS was significantly higher than previous tests at

3.58 cm, which is mostly due to the bias of the estimates rather than the variance.

This bias may be explained by the LSE estimating not only the location of the mobile

microphone, but also the four sound sources. The LSE maximizes the likelihood of

estimating x exactly, with making no guarantees of minimizing bias. While not the

primary objects of interest, the sound sources were located reasonably well with all

estimates within 5 cm of the respective speaker.
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Testpoint 1.
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Figure 33. Estimated location of mobile microphone at Testpoint 1

The test area configuration and results for Testpoint 1 are shown in Figure 33.

The bias of estimates in Tier 3 for Testpoint 1 was greater than that of Tier 2. All

estimates fall outside the microphone diaphragm. However, the variance and thus the

error ellipse of the estimates was much smaller because of the reduced DOP from the

new configuration involving 7 reference microphones. The DRMS of the estimates

was 1.65 cm, increasing by 6 mm compared to Tier 2. This increase was due to the

bias of the estimates despite the increased precision.
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Testpoint 4.
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Figure 34. Estimated location of mobile microphone at Testpoint 4

The test area configuration and results for Testpoint 4 are shown in Figure 34. In

previous tiers, Testpoint 4 showed significant increase in the size of the error ellipse

due to increased DOP. With the new configuration introduced in Tier 3, the DOP

of Testpoint 4 is reduced from 2.4 to 1.4. As expected with the decrease in DOP, the

size of the error ellipse for the testpoint in Tier 3 also diminished as shown in Figure

34b. The bias of the estimates is comparable to the preceding testpoints for Tier 3

with 15 of the estimates falling within the area of the microphone diaphragm. The

DRMS of the location estimates was 1.24 cm, which was also less than that of Tier 2.
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Testpoint 5.
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Figure 35. Estimated location of mobile microphone at Testpoint 5

The test area configuration and results for Testpoint 5 are shown in Figure 35.

While the orientation of the error ellipse for Testpoint 5 remained the same between

Tier 3 and previous tiers, the size of the ellipse was much smaller, showing more

consistent estimates. However, a stronger bias is present. Estimates fell left of and

slightly below the true microphone location, similar in magnitude to the bias found

at Testpoint 0. The DRMS of Testpoint 3 was nearly triple that of Tier 2 due to the

increased bias in the estimates.
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4.4 Tier 4 Methodology

4.4.1 Section Overview.

Tiers 1-3 all assumed the signals emitted from the sound sources were impulses. A

time domain amplitude peak detector was sufficient in accurately determining TOA

and TDOA measurements. Tier 4 does not assume sound sources produce impulse

waveforms. Instead, signals consist of recorded human speech. Because the signals are

more complex waveforms not guaranteed to have consistently timed peaks, direct peak

detection is not sufficient in determining TDOA measurements and instead, a GCC

method is implemented [17], as described in Section 2.2. Changes in the methodology

discussed in this section include the standard used to collect and differentiate between

the recorded human speech sound sources, as well as the GCC method of collecting

TDOA measurements.

4.4.2 Signal Collection and Differentiation.

The method for collecting audio for Tier 4 was similar to the approach used in

previous tiers. As before, each speaker successively emitted one after the other, but

the recording time for each signal was increased to two seconds, with a half second

pause between each speaker. An increased timeframe for each speaker allowed a higher

probability of a strong peak with the GCC TDOA method. The half-second pause

between each speaker prevents interference via reverberation overlapping between

trials. The four sequentially played sounds with half second pause are evident in the

waveform recorded from each microphone, plotted in Figure 36. Because each trial

takes much longer to perform, 20 trials were taken instead of 100.
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4.4.3 Generalized Cross-Correlation Time Difference of Arrival Mea-

surements.

The amplitudes of the recorded signals vary depending on the distance from each

microphone to the emitting sound source. But, the general shape of the waveform

is maintained across the recordings from the spatially separated microphones, as

seen in Figure 36. Instead of direct peak detection, the signal received from the

mobile microphone is cross-correlated with each of the signals from the reference

microphones according the the GCC method outlined in Section 2.2 [17]. Because

the general shapes of the waveforms are similar with some time offset, a peak forms

at the point of the time-offset of the microphones. The time offset of the peak in

the cross correlation corresponds to the TDOA measurement between the mobile

microphone and reference microphone for that sound source.

Figure 36. Example of multi-channel audio recording for one trial.
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4.5 Tier 4 Results

Table 7. Results for Test Performed in Tier 4

Testpoint

Approx.

DOP
Clock Error (µs) Position Error (cm)

Coords.

δ̄t σδt x̄ σx ȳ σy DRMS

0 (0,0) 0.5374 -90.88 0.67 2.73 0.21 -0.06 0.25 2.75

1 (1,-2) 0.5938 -25.69 0.91 1.98 0.17 -0.72 0.18 2.12

2 (-2,-2) 0.5990 -6.27 3.24 2.00 0.15 1.05 0.15 2.02

3 (2.9,2.9) 0.6437 -13.62 0.53 4.30 0.18 -0.80 0.17 4.38

4 (4,-2) 1.447 38.39 19.70 -1.26 0.27 1.71 0.19 2.15

5 (-5,-5) 4.554 120.04 20.96 -6.04 0.57 -1.75 0.66 6.34

As with Tier 3, because DRMS values are more weighted by bias than variance,

direct comparison between DOP and DRMS is difficult, with the exception of Test-

point 5, where a large increase in DOP is concurrent with a relatively large DRMS

value.
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Figure 37. Estimated location of mobile microphone at Testpoint 0

The bias of the estimates approximately 1.5 cm outside the area of the microphone

diaphragm, as shown in Figure 37. Results were fairly consistent with those of Tier 3

for Testpoint 0. The consistency of bias shows that using GCC method for obtaining

TDOA as opposed to amplitude peak detection did not have a significant impact

on the accuracy of the location estimates when sound sources were not close to the

microphone.
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Testpoint 1.
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Figure 38. Estimated location of mobile microphone at Testpoint 1

The test area configuration and results for Testpoint 1 are shown in Figure 38. At

Testpoint 1, the biases present in Tier 4 testing were again similar to the biases present

in Tier 3, giving further evidence to support that the GCC method has minimal effect

on the accuracy of the location estimation when sound sources are not directly near

the microphone.
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Testpoint 3.
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Figure 39. Estimated location of mobile microphone at Testpoint 3

Tier 4 showed a significant increase in DRMS for Testpoint 3, which was mostly

weighted by the bias of the estimates, shown in 39. The difference between Tiers 3 and

4 is the signal structure (impulse vs. speech) and the method of TDOA acquisition

(amplitude peak detection vs. GCC method). It is likely that the new method of

acquiring TDOA measurements decreases in accuracy when microphones are adjacent

to any of the sound sources.
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4.6 Chapter Summary

Tier 3 used TDOA measurements in an LSE to locate the mobile microphone

from sound sources of unknown location with known signal structure and unknown

timing emitting sequentially. In order to do so, seven reference microphones were

introduced. As a bi-product, the LSE estimated the general locations of the sound

sources in addition to the location of the mobile microphone. Results showed slightly

degraded accuracy, yet increased precision compared to Tier 2.

Tier 4 used TDOA measurements in a similar LSE to locate the mobile microphone

from sound sources of unknown location with unknown signal structure and unknown

timing emitting sequentially. In order to acquire TDOA measurements, the GCC

method was implemented. Results were similar to those of Tier 3 at testpoints not

adjacent to sound sources. Testpoint 3, close to a sound source, showed decreased

accuracy in location estimation for Tier 4.
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V. Positioning with Simultaneously Emitting Sound Sources
at Unknown Locations

5.1 Chapter Overview

In previous tiers, sound sources were played sequentially so that the audio from

any speaker would not interfere with the location estimation of another speaker.

Tier 5 allowed for more a more realistic application where sound sources emitted

simultaneously, as outlined in Table 8. Section 5.2 presents the methodology for Tier

5, followed by results in Section 5.3, and conclusion in Section 5.4.

5.2 Tier 5 Methodology

5.2.1 Section Overview.

This section introduces Blind Source Separation (BSS) as a means of separating

the sound sources in the test area to recreate each signals as originally emitted without

the interference of the other signals. In order to separate the signals, the technique

for separating the signals requires known or estimated locations of the sound sources.

Because the sound source locations are unknown, SRP mapping [13], first discussed

in Section 2.4.4, was used to estimate the locations. While SRP mapping is successful

in detecting sound sources, the maps often contain numerous false positives. Peak

Isolation Filtering (PIF) was used to dramatically reduce the number of false posi-

tives with a high likelihood of maintaining true peaks. With the estimated locations

of sound sources, TFM was used to isolate the signals of each sound source from

one another. Because SRP mapping with PIF did not always accurately estimate

the sound source locations, a method was introduced for eliminating errant sound

source estimations before affecting the LSE of the mobile microphone. Figure 40 is a

schematic showing the order in which these methods are implemented in Tier 5.
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Table 8. Conditions of testing for Tier 5.

Tier
Sound Source

Type
Sound Source

Timing
Sound Source
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Figure 40. Methodology for obtaining mobile microphone location estimates in Tier 5.

5.2.2 Time Frequency Masking.

In Tier 5, sound sources simultaneously emit. If microphone output were directly

correlated with other microphone output, as done in Tier 4, there would be multiple

peaks in the correlation caused by the four sound sources, with no indication of which
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peak corresponds to a certain sound source. In order to avoid ambiguity attribution

of correlation peaks to sound sources, the signals recorded from the microphones

were reconstructed to isolate the audio from each of the sound sources. Isolated

recordings of each of the signals were then correlated with the recordings from each

of the microphones in order to determine distance differences.

The signals were isolated through the process of TFM. First, the original recording

were beamformed; each channel was proportionally delayed according to the distance

between the known microphone locations and estimated sound source locations ob-

tained through SRP (presented in Section 5.2.3). The delayed channels were then

summed together so that the signal of interest constructively added across the chan-

nels. Overlapping Short Time Fourier Transforms were then calculated for each of

the beamformed signals to create a Time-Frequency (TF) map. Power differentials

between frequency regions in the map indicate if a given area of the map may be

associated with the signal of interest. Areas that were not associated with the Signal

of Interest (SOI) were then set to 0 in a binary mask. The mask is then multiplied by

the TF map and inverse transformed to create the isolated reconstruction of the signal

of interest [30]. Figure 41 outlines the process of TFM to generate the reconstructed

signal. TFM was performed with each of the sound sources as the SOI to create

reconstructions of each original sound source. Depending on the relative power of the

sound sources and the accuracy of the SRP sound source location estimates obtained

in Section 5.2.3, some signal reconstructions may not be strong enough to isolate

the signal. Section 5.2.6 discusses methods to determine if the reconstructed signals

sufficiently isolate the signal of interest for use in locating the mobile microphone.
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Figure 41. TFM speaker of interest extraction system. Adapted from [30].

5.2.3 Steered Response Power.

In order to perform the beamforming in TFM, either estimated or known locations

of sound sources are required. Tier 3 and beyond assume unknown locations of the

sound sources, so the locations must be estimated prior to LSE estimation. SRP

allows an estimation of the sound source locations only using the audio recorded from

the known reference microphone locations. The SRP technique was used to map the
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test area with the microphone channels beamformed for each pixel in the map. The

power of the delayed and summed signal was recorded at each point in the map. In

areas where sound sources were active, the microphone channels constructively added,

resulting in higher signal power than areas where the signals destructively combined.

Areas in the map with high power indicate the probable location of a sound source.

If performed at the original 44.1 kHz sampling frequency of the recorded audio,

SRP becomes a computationally burdensome process. The pixel resolution of the

SRP image must be strong enough to not skip over any samples in the audio between

pixel locations. With too weak of a resolution, the center of the pixels may not fall on

the location of the sound sources, so sound sources can be missed. As the resolution

of the map increases by N , the number of computations required to create the map

increases by N2. At 44.1 kHz, approximately a 7 mm pixel resolution is required,

translating to a map area of 420,000 delay and sum computations. In order to reduce

the computation required, the recorded audio is filtered and downsampled to 8 kHz.

Filtering and downsampling allows for larger pixel size with a much lower chance of

skipping over the highest powered alignment of the delayed and summed signal. At 8

kHz, approximately a 4 cm pixel is required, which translates to only 600 delay and

sum operations required to create the SRP map.

With multiple simultaneously emitting sound sources, one or two speakers may

dominate other sound sources. However, there may be instances of time where the

dominate speakers are silent, allowing for a clearer location estimate of softer speakers.

The SRP algorithm was calculated for multiple time windows during the trial and

the power was averaged across the time windows to allow for more accurate location

of multiple sound sources. Figure 42 shows a time averaged SRP map revealing the

general locations of four sound sources.
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Figure 42. Time averaged SRP map to showing all four sound source locations.

5.2.4 Peak Isolation Filtering.

There are two main issues with resolving the speaker locations solely using SRP:

streaking and multiple high power valued pixels near a single sound source. Streaking

is present in locations where the signal power is predominately generated by only two

microphone recordings. When three or more microphones significantly contribute to

the SRP, a larger peak is apparent. However, the streaking caused by one sound

source may generate more power than a single peak generated by another. Or, a

sound source may have pixels adjacent to the true location that are greater than the

highest peak of another sound source. The four largest power values on the map may

not correspond to the four sound sources; pixels near higher powered sound sources

may have greater power than the highest peak of softer sound sources and cause

errant estimates of the sound source locations.
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PIF was used to produce a more defined center of each of the peaks and to reduce

the effects of streaking. Pixels in the SRP map were saved only if they were the

highest value pixel of all their nearest neighbors. Otherwise, the pixels are set to 0,

effectively creating a mask around the highest values in the map. This procedure

assumes that no two sound sources were located close enough to both fall under the

area of the mask. A larger mask produces fewer false positive peaks, but risks masking

one sound source if it is too close to another sound source. A smaller mask is more

likely to maintain all sound sources, at the expense of keeping more false positive

peaks. For the results shown, a mask with an area of 7 x 7 pixels was used which

assumes no two sound sources are within three pixels (i.e. 12 cm) of one another.

Figure 43a shows a simplified example of peak isolation filtering along one dimen-

sion. Figure 43a is a cross-section of Figure 42 at Y = 3 m. Without peak isolation

filtering, two sound sources are detected around X = −3 m, since the two highest

values, shown in red, are adjacent to one another. With the application of peak iso-

lation filtering, as shown in Figure 43b, both sound sources are detected: one near

X = −3 m and the other near X = 3 m.

-5 -4 -3 -2 -1 0 1 2 3 4 5

X [m]

-0.2

0

0.2

0.4

0.6

0.8

1

R
e
la

ti
v
e
 S

R
P

(a)

-5 -4 -3 -2 -1 0 1 2 3 4 5

X [m]

-0.2

0

0.2

0.4

0.6

0.8

1

R
e
la

ti
v
e
 S

R
P

(b)

Figure 43. (a) Cross-section of unfiltered SRP map shown in Figure 42 at Y = 3 m.
Estimated sound source locations (red) are both on a single peak. (b) SRP cross-section
after PIF has been applied, producing correct sound source location estimates.

78



0

-5

Y [m]

0 -5

X [m]

0

0.5

R
e
la

ti
v
e

 S
R

P

5
5

1

Figure 44. SRP map from Figure 42 with peak isolation filtering applied. Streaking has
been reduced and four distinct peaks are shown corresponding to the source locations.

Figure 44 shows the time averaged SRP map in Figure 42 after peak isolation

filtering was applied to the SRP map. While some points along the original streaks

were still apparent after applying peak isolation filtering, the larger values along the

streaks that were most likely to cause false estimations were eliminated. Assuming

four sounds sources within the test area, the coordinates of the four remaining pixels

with the highest value were used as the estimated locations of the sound sources. The

location estimates of the sound sources were then implemented into the TF masking

algorithm in order to produce the reconstructed signals necessary for determining

TDOA measurements.
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5.2.5 Time Difference of Arrival Measurements.

Because the sound sources were simultaneously emitted in Tier 5, a new approach

to obtaining the TDOA measurements was necessary. If the same GCC method

used in Tier 4 were implemented, there would be multiple peaks in the correlation

function with no clear indication of which peak corresponds to a particular sound

source. Instead, two separate GCCs are performed: one between the audio from the

mobile microphone and the reconstructed audio of a given sound source, and the

other between the audio of a reference microphone and the same reconstructed audio,

as shown in Figure 45. Because the reconstructed audio carried less noise from other

sound sources, the correlation functions were more likely to result in single peaks.

The TDOA measurement relative to the mobile microphone and the sound source of

interest is the difference in timing of the two correlation function peaks.
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Figure 45. Modified GCC method, applying reconstructed audio for generating
stronger, unambiguous correlation peaks. Peaks of the mobile microphone correla-
tion and the reference microphone correlation are then differenced to determine the
TDOA value.
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5.2.6 Sound Source Selection.

The new approach to obtaining the TDOA measurements reduces interference

from other sound sources. But, certain conditions may still cause false peaks in the

correlation functions, leading to errant TDOA measurements. For example, if one

of the sound sources is significantly louder than the other sound sources, the recon-

structed audio of a weaker sound source may still contain significant traces of the

louder sound source and cause a peak corresponding to the location of the louder

sound source. As stated in Section 4.2.3, only three sound sources and three refer-

ence microphones are necessary to estimate the location of the mobile microphone.

In testing, four sound sources were used, so that if one sound source caused multiple

ambiguous peaks in the cross correlation function, the TDOA measurements from

that speaker could be discarded, and the LSE estimate could be obtained with the

remaining three sound sources. In testing, if a cross correlation function produced

a peak with at least twice the amplitude of all other points, the produced peak was

determined to be sufficient for use in the TDOA estimation. However, if no signif-

icantly dominant peak was produced, then the TDOA measurements corresponding

to that sound source were discarded. Figure 46a gives an example where both cross

correlation functions produced clear dominant peaks, whereas Figure 46b shows cross

correlation functions with multiple, ambiguous peaks, indicating the TDOA measure-

ment for that sound source should be discarded.
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Figure 46. (a) Cross-correlation example with good peak determination. (b) Cross-
correlation example with ambiguous peak determination.

5.3 Tier 5 Results

Table 9 provides a summary of results for Tier 5 at all testpoints. While most

testpoints showed results similar to those of Tier 4, Testpoint 3 showed a significant

increase in DRMS, far more than any other test performed. Testpoint 3 also showed

the highest clock error at 327.29 µs.

Table 9. Results for Test Performed in Tier 5

Testpoint
Approx.

DOP
Clock Error (µs) Position Error (cm)

Coords.
δ̄t σδt x̄ σx ȳ σy DRMS

0 (0,0) 0.5374 57.19 5.04 2.99 0.19 0.03 0.17 3.00
1 (1,-2) 0.5938 -25.69 0.91 1.98 0.17 -0.72 0.18 2.12
2 (-2,-2) 0.5990 99.18 69.86 0.39 0.24 6.19 0.26 6.21
3 (2.9,2.9) 0.6437 327.29 45.21 10.47 0.82 41.88 2.05 43.22
4 (4,-2) 1.447 -48.66 16.36 4.16 0.76 -1.94 0.28 4.66
5 (-5,-5) 4.554 -87.01 156.97 -9.02 1.57 -4.55 1.46 10.33
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Testpoint 0.
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Figure 47. Estimated location of mobile microphone at Testpoint 0

While the bias present in estimates, shown in Figure 47, is greater than all previous

tiers, it is only marginally greater than the bias of Tier 4. The variance, and thus

the size of the error ellipse, is consistent with those of previous tiers. The slight

increase in bias and consistency of the variance may indicate locating the microphone

using simultaneously emitting sound sources slightly degrades the accuracy while

maintaining the precision of the estimates. The DRMS of the estimates was 3.00 cm,

almost exclusively weighted by the bias.
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Testpoint 3.
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Figure 48. Estimated location of mobile microphone at Testpoint 3

The test area configuration and results for Testpoint 3 are shown in Figure 48.

While results for Tier 4 at Testpoint 3 were significantly biased, the innaccuary of

the estimates only grew for Tier 5, producing the highest location estimation errors

of all tests. With a DRMS of 43.22 cm, estimates were far above and slightly right of

the true microphone location. As shown in Figure 48b, the true mobile microphone

location is visually identifiable below Speaker 2, but the estimated mobile microphone

location is above Speaker 2. This significant error may be caused by the close prox-

imity of the mobile microphone and Speaker 2. The signals created by the other three

speakers could not be separated by the dominant signal from Speaker 2, resulting in

errant TDOA measurements. Also of note is the significant error in location estimates

for the sound sources, as seen in Figure 48a. The timing estimates were also degraded

with a mean clock error of 327.29 µs and a standard deviation of 45.21 µs.
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Testpoint 4.
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Figure 49. Estimated location of mobile microphone at Testpoint 4

The test area configuration and results for Testpoint 4 are shown in Figure 49.

The DRMS at Testpoint 4 for Tier 5 was 4.66 cm, which was four times greater than

the DRMS for Tier 4 with both a greater bias and variance of the estimates as seen

in Figure 49b. With the mobile microphone located 1.4 m from Speaker 4, as shown

in Figure 49a, it is possible that the estimates were affected by the proximity of the

sound source, but to a lesser extent than shown at Testpoint 3.
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Testpoint 5.
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Figure 50. Estimated location of mobile microphone at Testpoint 5

The test area configuration and results for Testpoint 5 are shown in Figure 50.

Tier 5 produced the highest DRMS value recorded for Testpoint 5 (10.32 cm). While

the DRMS is significantly larger than other select testpoints, the error of the estimates

is more likely due to the higher DOP of Testpoint 5 than the proximity of a sound

source; the closest sound source was 2.8 m away from the mobile microphone. The

orientation of the error ellipse is similar to other tests performed at Testpoint 5, but

the size was significantly larger.
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5.4 Chapter Summary

Tier 5 used TDOA measurements in an LSE to locate the mobile microphone

from sound sources of unknown location with unknown signal structure and unknown

timing emitting simultaneously. First, likely sound source locations were estimated

through SRP. These initial sound source location estimates were used in applying

TFM in order to reconstruct the original audio of each sound source. These recon-

structions were used in a modified version of the GCC in order to produce the TDOA

measurements. Results varied in comparison to previous tiers by testpoint. Testpoint

0 had similar findings compared to Tier 4, whereas Testpoint 3 showed a significant

decrease in accuracy of the location estimates. The proximity of Speaker 2 to the

mobile microphone caused too much interference when attempting to acquire TDOA

measurements from other sound sources.
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VI. Conclusion

6.1 Research Summary

The goal of this research was to explore the feasibility of tracking sound as an

alternative form of PNT. Specifically, a system was developed capable of locating

a mobile microphone using simultaneously emitting SoOPs from sound sources of

unknown location. By reconstructing the audio as originally emitted, the system

creates clear reference points in the environment. These reference points are used

to generate TDOA measurements between the mobile microphone and each of the

reference microphones. The TDOA measurements are applied to an LSE algorithm

to estimate the location of the mobile microphone. Because of the abundance of

SoOPs available in the audible range, the system ideally runs passively, but can also

self-generate audio when too few naturally occurring signals are available.

The system was designed in a way to first prove the concept of sound-based po-

sitioning, and progressively remove assumptions to approach a more realistic appli-

cation. The initial design, Tier 1, assumed known timing, position, and waveform of

sound sources with sequential playback. Without the need for reference microphones,

Tier 1 proved the initial concept of using TOA measurements to estimate the position

of the single microphone.

In Tier 2, known signal timing was not assumed, introducing the need for a ref-

erence microphone. Comparing the TOAs of the two microphones generated TDOA

measurements, which cancel out receiver clock error. Results for Tier 2 showed qual-

ities similar to Tier 1.

In Tier 3, known sound source location was not assumed. With unknown sound

source locations, minimum of three reference microphones is required to solve for

the location of the mobile microphone. However, to increase the accuracy of location
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estimates and to maintain a DOP map shape similar to previous tiers, a total of seven

reference microphones were used. The LSE was modified to compensate for unknown

sound source positions, which as a byproduct, estimated the locations of the sound

sources in addition to the main objective of locating the mobile microphone.

In Tier 4, the system did not assume sound sources generated a impulse waveform,

but instead, human speech. The method for determining TDOA values was altered

from an amplitude peak detector to the GCC method, which detects time delays in

similar signals.

In Tier 5, signals emitted simultaneously instead of sequentially. This difference

in assumptions was the most complex threshold crossed toward developing a realistic

system. A TFM method was applied in order to reconstruct the audio of the signals

as originally emitted and remove the noise created by other sound sources in each

channel. The TFM method required known or accurate estimates of the sound source

locations. Because the locations were assumed unknown, SRP and PIF were applied

to provide an initial estimate of the sound source positions. A modified GCC method,

which implemented the reconstructed signals was then applied to provide TDOA

measurements. These TDOA measurements were used in a LSE algorithm similar to

Tiers 3 and 4 to estimate the mobile microphone position. Results showed evidence

of the precise capabilities of positioning via sound. In most cases, estimates were

within several centimeters of the true microphone location, if not within the area of

the microphone diaphragm. A noticeable contributor to error was the larger DOP

values present at some test locations. Error due to DOP can be reduced given a

proper configuration of the microphone array.

While not having a foreseeable future of overtaking GPS, the cm-level accuracy

provided through passive methods proves sound-based position as a worthwhile area

of research in alternative PNT. Positioning via sound also generates byproducts
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useful to other applications; producing reconstructed audio of sound sources may be

desirable for surveillance purposes.

6.2 Future Research and Applications

6.2.1 Environmental Resiliency.

As an immediate step in progressing the robustness of the system described in

this paper, its capabilities could be increased to perform in outdoor environments.

Several difficulties arise in outdoor settings. One of which is the introduction of wind,

which varies the speed of sound over the test area. A better model of the speed of

sound that accounts for wind is required. Another difficulty is the prominence of

non-stationary sound sources, which are more difficult to locate using time-averaged

SRP maps. For the system to perform well in outdoor environments, the Doppler

effect must be considered when locating sound sources with SRP.

6.2.2 Sound Source Detection and Selection Methods.

In estimating the locations of sound sources in Tier 5, it was assumed that there

were exactly four sound sources within the test area. In reality, the number of sound

sources in a given area is often unknown. In order to apply the solution presented

in this thesis to more realistic scenarios, a system should be developed to detect how

many distinct sound sources are present and which sound sources would be useful in

estimating the location of the mobile microphone. Only three sound sources and three

reference microphones are required to form a solution, so additional sound sources

and reference microphones not likely to contribute to more accurate results could be

ignored.
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6.2.3 UAV Detection through Steered Response Power Mapping.

It is also possible to expand the search area of the system upwards to locate air-

borne sound sources such as small UAVs which may otherwise be difficult to detect.

Given the large search volume required for practical application, the computational

cost of SRP must be mitigated. Perhaps a trade-off of reduced accuracy to increase

computational speed would be permissible. If all reference microphones were located

at ground level, the DOP in the vertical direction would be prohibitive to producing

accurate location estimates of UAV. Implementing airborne microphones or micro-

phones affixed to towers could reduce vertical DOP. Of course, filtering would be

required to ignore sound generated by the microphone host.

6.2.4 Infrasound Positioning for Increased Scalability.

Given adequate performance in outdoor environments, the developed system could

be used in large scale surveillance systems. Because of the slow speed of sound

compared to the speed of light, sound based positioning is a unique form of alternative

PNT. Decreased accuracy in receiver clocks do not have as severe of an impact to

sound-based positioning. A 1 ms difference in clocks between receivers translates to

approximately a 35 cm error in range difference measurements, whereas a similar clock

error for GPS translates to a 300 km pseudorange measurement error. In applications

tolerant of meter-level accuracy, several independent receivers, each with its own clock

and microphone array, can be combined to create a system capable of covering a

much larger area. The tolerance of differences in time errors between receivers would

allow use of network clock synchronization though methods such as Network Time

Protocol (NTP), while still maintaining fairly accurate position estimation.
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